A Weighted Correlation Index for Rankings with Ties

Sebastiano Vigna Università degli Studi di Milano

The problem

- Understanding the correlation between different rankings
- Why do correlation measurements between centrality measures are so flaky?
- Taking care of ties is essential (indegree)
- Rank differences between important elements should be more relevant
- Large-scale target (whole graphs), not small sets of results

As a Motivation

- Indegree
- Bavelas's Closeness
- Harmonic Centrality
- PageRank
- Katz

Geometric Centralities

- Bavelas's closeness (1948): $\frac{1}{\sum_{y} d(y, x)}$
- Harmonic centrality (1965): $\sum_{\substack{y \neq x}} \frac{1}{d(y, x)}$
- We're just moving from a denormalized, reciprocated arithmetic mean to a denormalized, reciprocated harmonic mean

Spectral Centralities

• Katz (1951): $1 \sum_{k \ge 0} \alpha^k G^k$ • PageRank: $1/n \sum_{k \ge 0} \alpha^k \bar{G}^k$

Indegree	PageRank	Katz	Harmonic	Closeness
United States	United States	United States	United States	Kharqan Rural District
List of sovereign states	Animal	List of sovereign states	United Kingdom	Talageh-ye Sofla
Animal	List of sovereign states	United Kingdom	World War II	Talageh-ye Olya
England	France	France	France	Greatest Remix Hits (Whigfield album)
France	Germany	Animal	Germany	Suzhou HSR New Town
Association football	Association football	World War II	Association football	Suzhou Lakeside New City
United Kingdom	England	England	English language	Mepirodipine
Germany	India	Association football	China	List of MPs M-N
Canada	United Kingdom	Germany	Canada	List of MPs O–R
World War II	Canada	Canada	India	List of MPs S–T
India	Arthropod	India	Latin	List of MPs U–Z
Australia	Insect	Australia	World War I	List of MPs J–L
London	World War II	London	England	List of MPs C
Japan	Japan	Italy	Italy	List of MPs F–I
Italy	Australia	Japan	Russia	List of MPs A-B
Arthropod	Village	New York City	Europe	List of MPs D-E
Insect	Italy	English language	Australia	Esmaili-ye Sofla
New York City	Poland	China	European Union	Esmaili-ye Olya
English language	English language	Poland	Catholic Church	Levels of organization (ecology)
Village	Nationa Reg. of Hist. Places	World War I	London	Jacques Moeschal (architect)

Table 1: Top 20 pages of the English version of Wikipedia following five different centrality measures.

	Ind.	PR	Katz	Harm.	Cl.			Ind.	PR	Katz	Harm.	Cl.
Indegree	1	0.75	0.90	0.62	0.55	-	Indegree	1	0.31	0.63	0.24	0.06
PageRank	0.75	1	0.75	0.61	0.56		PageRank	0.31	1	0.27	0.10	0.10
Katz	0.90	0.75	1	0.70	0.62		Katz	0.63	0.27	1	0.50	0.20
Harmonic	0.62	0.61	0.70	1	0.92		Harmonic	0.24	0.10	0.50	1	0.65
Closeness	0.55	0.56	0.62	0.92	1		Closeness	0.06	0.10	0.20	0.65	1

Indegree	PageRank	Katz	Harmonic	Closeness
Carl Linnaeus	Carl Linnaeus	Carl Linnaeus	Aristotle	Noël Bernard (botanist)
Aristotle	Aristotle	Aristotle	Albert Einstein	Charles Coquelin
Thomas Jefferson	Thomas Jefferson	Thomas Jefferson	Thomas Jefferson	Markku Kivinen
Margaret Thatcher	Charles Darwin	Albert Einstein	Charles Darwin	Angiolo Maria Colomboni
Plato	Plato	Charles Darwin	Thomas Edison	Om Prakash (historian)
Charles Darwin	Albert Einstein	Karl Marx	Alexander Graham Bell	Michel Mandjes
Karl Marx	Karl Marx	Plato	Nikola Tesla	Kees Posthumus
Albert Einstein	Pliny the Elder	Margaret Thatcher	William James	F. Wolfgang Schnell
Vladimir Lenin	Vladimir Lenin	Vladimir Lenin	Isaac Newton	Christof Ebert
Sigmund Freud	Johann Wolfgang von Goethe		Karl Marx	Reese Prosser
J. R. R. Tolkien	Margaret Thatcher	Ptolemy	Charles Sanders Peirce	David Tulloch
Johann Wolfgang von Goethe	Ptolemy	Johann Wolfgang von Goethe	•	Kim Hawtrey
Spider-Man	Sigmund Freud	Pliny the Elder	Enrico Fermi	Patrick J. Miller
Pliny the Elder	Isaac Newton	Benjamin Franklin	Ptolemy	Mikel King
Benjamin Franklin	Benjamin Franklin	J. R. R. Tolkien	John Dewey	Albert Perry Brigham
Leonardo da Vinci	J. R. R. Tolkien	Thomas Edison	Johann Wolfgang von Goeth	
Isaac Newton	Immanuel Kant	Sigmund Freud	Bertrand Russell	George Henry Chase
Ptolemy	Leonardo da Vinci	Immanuel Kant	Plato	Charles C. Horn
Immanuel Kant	Pierre André Latreille	Leonardo da Vinci	John von Neumann	Paul Goldstene
George Bernard Shaw	Thomas Edison	Noam Chomsky	Vladimir Lenin	Robert Stanton Avery
Indegree	PageRank	Katz	Harmonic	Closeness
Martini (cocktail)	Martini (cocktail)	Irish coffee I	rish coffee	Magie Noir
Piña colada	Caipirinha	Caipirinha G	Caipirinha	Batini (drink)
Mojito	Mojito	-	Kir (cocktail)	Scorpion bowl
Caipirinha	Piña colada	Piña colada M	Martini (cocktail)	Poinsettia (cocktail)
Cuba Libre	Irish coffee	Kir (cocktail)	Piña colada	Irish coffee
Irish coffee	Kir (cocktail)	Mojito	Mojito	Caipirinha
Singapore Sling	Cosmopolitan (cocktail)	•	Beer cocktail	Kir (cocktail)
Manhattan (cocktail)	Manhattan (cocktail)	Cuba Libre S	Shaken, not stirred	Martini (cocktail)
Windle (sidecar)	IBA Official Cocktail		Pisco Sour	Piña colada
Cosmopolitan (cocktail)	Beer cocktail	01 0	Mai Tai	Mojito
coontrain (coontrain)				

Shaken, not stirred

Manhattan (cocktail)

Windle (sidecar)

Moscow mule

Vesper (cocktail)

Pisco Sour

Cosmopolitan (cocktail)

White Russian (cocktail)

IBA Official Cocktail

Beer cocktail

Spritz (alcoholic beverage)

Long Island Iced Tea

Sazerac

Fizz (cocktail)

Wine cocktail

Moscow mule

Singapore Sling

White Russian (cocktail)

Cuba Libre

Flaming beverage

Beer cocktail

Mai Tai

Sazerac

Pisco Sour

Shaken, not stirred

Long Island Iced Tea

Flaming beverage

Fizz (cocktail)

Wine cocktail

Spritz (alcoholic beverage)

Mai Tai

Kir (cocktail)

Beer cocktail

Sour (cocktail)

Vesper (cocktail)

Pisco Sour

IBA Official Cocktail

Shaken, not stirred

Long Island Iced Tea

White Russian (cocktail)

Mai Tai

Singapore Sling

Long Island Iced Tea

Shaken, not stirred

Flaming beverage

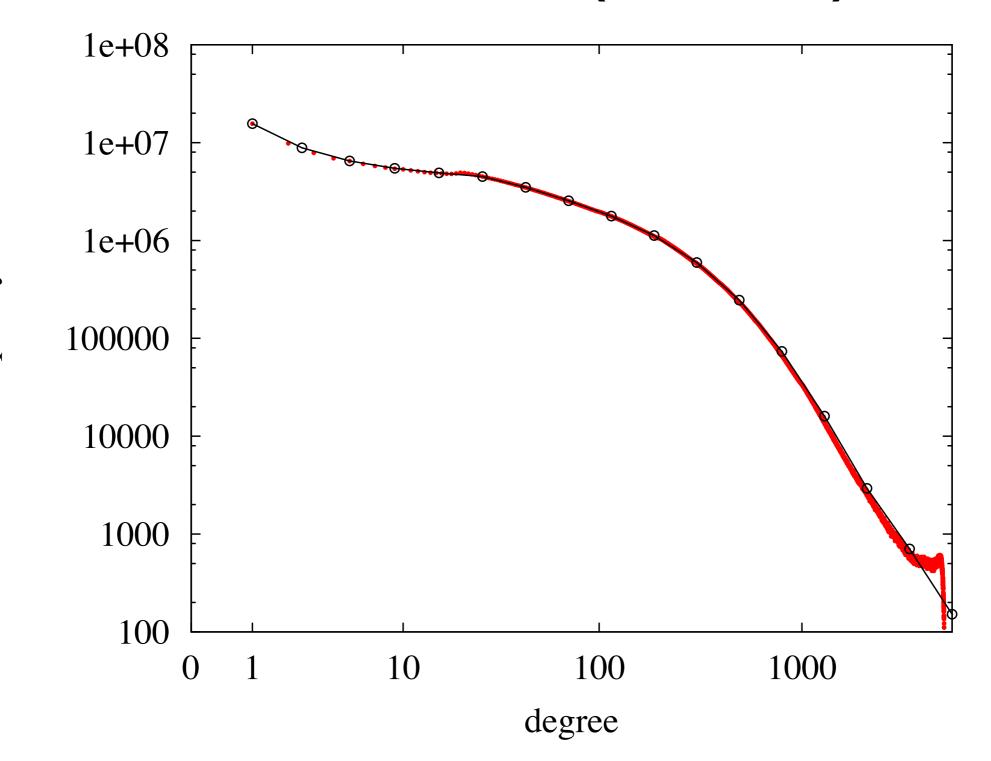
Cuba Libre

Tom Collins

Sour (cocktail)

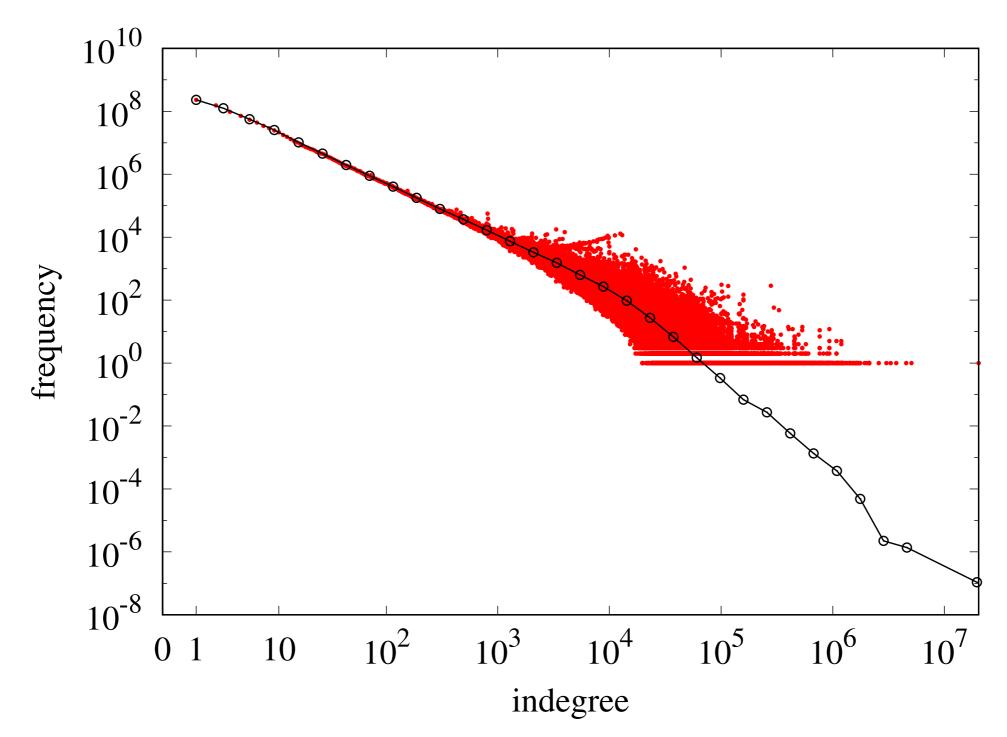
Negroni

Lillet


Kendall's T 1938

- Scores **r**, **s** (distinct)
- Concordances: pairs (i, j), i < j, such that the scores for i and j in r and s are in the same order
- τ: Concordances minus discordances divided by concordances plus discordances (i.e., the number of ordered pairs)
- Note: if you skip ties on both sides you get Goodman–Kruskal's γ

Ties Are Important


- >99% nodes in a typical social/web graph are in a degree tie
- Ties cannot be solved by random assignment
- <0,0,0,...,1,1,1,...> and <1,1,1,...,2,2,2,...> give correlation ≈0.5
- When you compare network rankings, you're almost always working in the 0.7to-1 region

Facebook (2011)

frequency

.eu (2015, 10⁹ pages)

Kendall's T 1945

• Starts from Daniels (1944): every correlation is a cosine similarity

$$\langle \boldsymbol{r}, \boldsymbol{s} \rangle := \sum_{i < j} \operatorname{sgn}(r_i - r_j) \operatorname{sgn}(s_i - s_j)$$

• "Norm"

$$\|\boldsymbol{r}\| := \sqrt{\langle \boldsymbol{r}, \boldsymbol{r} \rangle}$$

• Cosine similarity!

$$\tau(\boldsymbol{r},\boldsymbol{s}) := \frac{\langle \boldsymbol{r},\boldsymbol{s} \rangle}{\|\boldsymbol{r}\| \cdot \|\boldsymbol{s}\|}$$

Now

$$\langle \mathbf{r}, \mathbf{s} \rangle_w := \sum_{i < j} \operatorname{sgn}(r_i - r_j) \operatorname{sgn}(s_i - s_j) w(i, j)$$

$$|\langle \boldsymbol{r},\boldsymbol{s}\rangle_{\boldsymbol{w}}| \leq \|\boldsymbol{r}\|_{\boldsymbol{w}}\|\boldsymbol{s}\|_{\boldsymbol{w}}$$

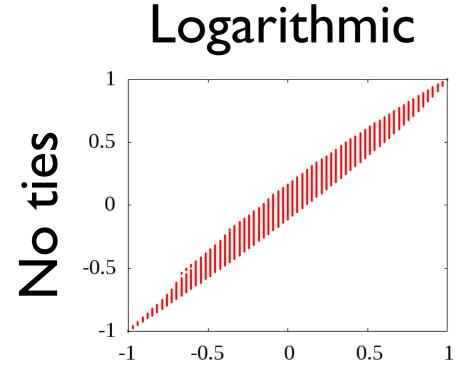
$$\tau_w(\boldsymbol{r},\boldsymbol{s}) := \frac{\langle \boldsymbol{r},\boldsymbol{s} \rangle_w}{\|\boldsymbol{r}\|_w \cdot \|\boldsymbol{s}\|_w}$$

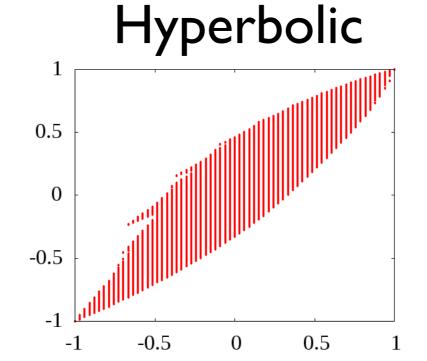
Related

- Shieh [St. & Pr. L. 1998]: weight the pair (i, j) with w_{ij}
- No ties!
- Yilmaz, Aslam & Robertson [SIGIR 2008]: w_{ij} := 1/j (motivated by probability)
- Kumar & Vassilvitskii [WWW 2010]: w_{ij} depending on similarity, ties broken randomly
- Iman & Conover [Technometrics 1987]: Spearman's correlation between Savage scores H_n H_{i -1}
- Farnoud [2012]: weight adjacent transpositions (*i i* + 1) and compute minimum weight

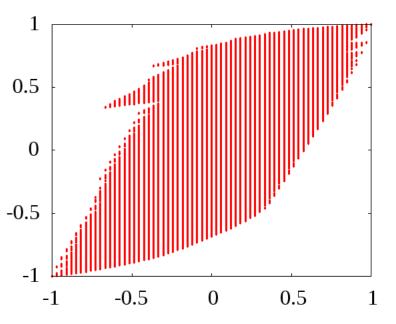
Decoupling Rank and Weight

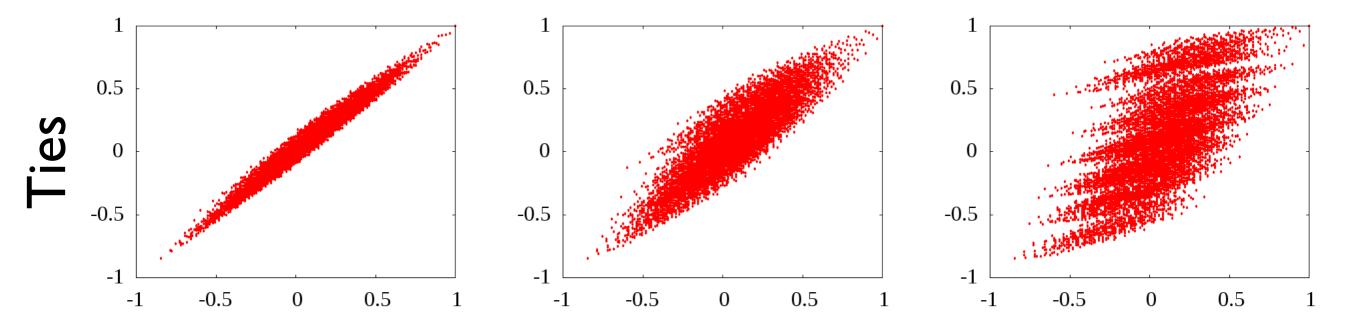
$$\langle \mathbf{r}, \mathbf{s} \rangle_{\rho, w} := \sum_{i < j} \operatorname{sgn}(r_i - r_j) \operatorname{sgn}(s_i - s_j) w(\rho(i), \rho(j))$$


$$\tau_{\bullet,w}(\boldsymbol{r},\boldsymbol{s}) := \frac{\tau_{\rho_{\boldsymbol{r},\boldsymbol{s}},w}(\boldsymbol{r},\boldsymbol{s}) + \tau_{\rho_{\boldsymbol{s},\boldsymbol{r}},w}(\boldsymbol{r},\boldsymbol{s})}{2}$$


- ρ_{r,s} is the ranking induced by *r* and *s* in lexicographical order
- viceversa for ρ_{s, r}

Computable Quickly


- O(n log n) variant of Knight's algorithm (highly parallelizable, distributable—it's a MergeSort)
- Works for any scheme w(i, j):=f(i) ⊙ g(j) with suitable operation ⊙ (e.g., addition, multiplication)
- We suggest additive hyperbolic weighting, weighting (i, j) by I/(i+1)+1/(j+1): τ_h


Correlation with Kendall's T

Quadratic

Wikipedia

	Ind.	PR	Katz	Harm.	C 1.
Indegree	1	0.75	0.90	0.62	0.55
PageRank	0.75	1	0.75	0.61	0.56
Katz	0.90	0.75	1	0.70	0.62
Harmonic	0.62	0.61	0.70	1	0.92
Closeness	0.55	0.56	0.62	0.92	1

Τ

 τ_{h}

	Ind.	PR	Katz	Harm.	Cl.
Indegree	1	0.95	0.98	0.90	0.27
PageRank	0.95	1	0.96	0.92	0.65
Katz	0.98	0.96	1	0.93	0.26
Harmonic	0.90	0.92	0.93	1	0.28
Closeness	0.27	0.65	0.26	0.28	1

Table 6: τ_h on Wikipedia.

Hollywood co-starship

Indegree	PageRank	Katz	Harmonic	Closeness
Shatner, William	Jeremy, Ron	Shatner, William	Sheen, Martin	Östlund, Claes Göran
Flowers, Bess	Hitler, Adolf	Sheen, Martin	Clooney, George	Östlund, Catarina
Sheen, Martin	Kaufman, Lloyd	Hanks, Tom	Jackson, Samuel L.	von Preußen, Oskar Prinz
Reagan, Ronald (I)	Bush, George W.	Williams, Robin (I)	Hopper, Dennis	von Preußen, Georg Friedrich
Clooney, George	Reagan, Ronald (I)	Clooney, George	Hanks, Tom	von Mannstein, Robert Grund
Jackson, Samuel L.	Clinton, Bill (I)	Reagan, Ronald (I)	Stone, Sharon (I)	von Mannstein, Concha
Williams, Robin (I)	Sheen, Martin	Willis, Bruce	Brosnan, Pierce	von der Busken, Mart
Hanks, Tom	Rochon, Debbie	Jackson, Samuel L.	Hitler, Adolf	van der Putten, Thea
Jeremy, Ron	Kennedy, John F.	Stone, Sharon (I)	McDowell, Malcolm	de la Bruheze, Joel Albert
Hitler, Adolf	Hopper, Dennis	Freeman, Morgan (I)	Williams, Robin (I)	de la Bruheze, Emile
Willis, Bruce	Nixon, Richard	Flowers, Bess	De Niro, Robert	te Riele, Marloes
Clinton, Bill (I)	Estevez, Joe	Brosnan, Pierce	Willis, Bruce	de Reijer, Eric
Freeman, Morgan (I)	Shatner, William	Douglas, Michael (I)	Hopkins, Anthony	des Bouvrie, Jan
Hopper, Dennis	Jackson, Samuel L.	Madonna (I)	Madonna (I)	de Klijn, Judith
Stone, Sharon (I)	Stewart, Jon (I)	Travolta, John	Lee, Christopher (I)	de Freitas, Luís (II)
Madonna (I)	Carradine, David (I)	Hopper, Dennis	Douglas, Michael (I)	de Freitas, Luís (I)
Bush, George W.	Asner, Edward	Ford, Harrison (I)	Sutherland, Donald (I)	Zuu, Winnie Otondi
Harris, Sam (II)	Zirnkilton, Steven	Asner, Edward	Freeman, Morgan (I)	Zuu, Emmanuel Dahngbay
Brosnan, Pierce	Colbert, Stephen	MacLaine, Shirley	Stallone, Sylvester	Zilbersmith, Carla
Travolta, John	Madsen, Michael (I)	Clinton, Bill (I)	Ford, Harrison (I)	Zilber, Mac

Table 10: Top 20 pages of the Hollywood co-starship graph.

Hollywood co-starship

	Ind.	PR	Katz	Harm.	C 1.
Indegree	1	0.42	0.93	0.55	0.43
PageRank	0.42	1	0.36	0.10	0.18
Katz	0.93	0.36	1	0.61	0.49
Harmonic	0.55	0.10	0.61	1	0.86
Closeness	0.43	0.18	0.49	0.86	1

τ

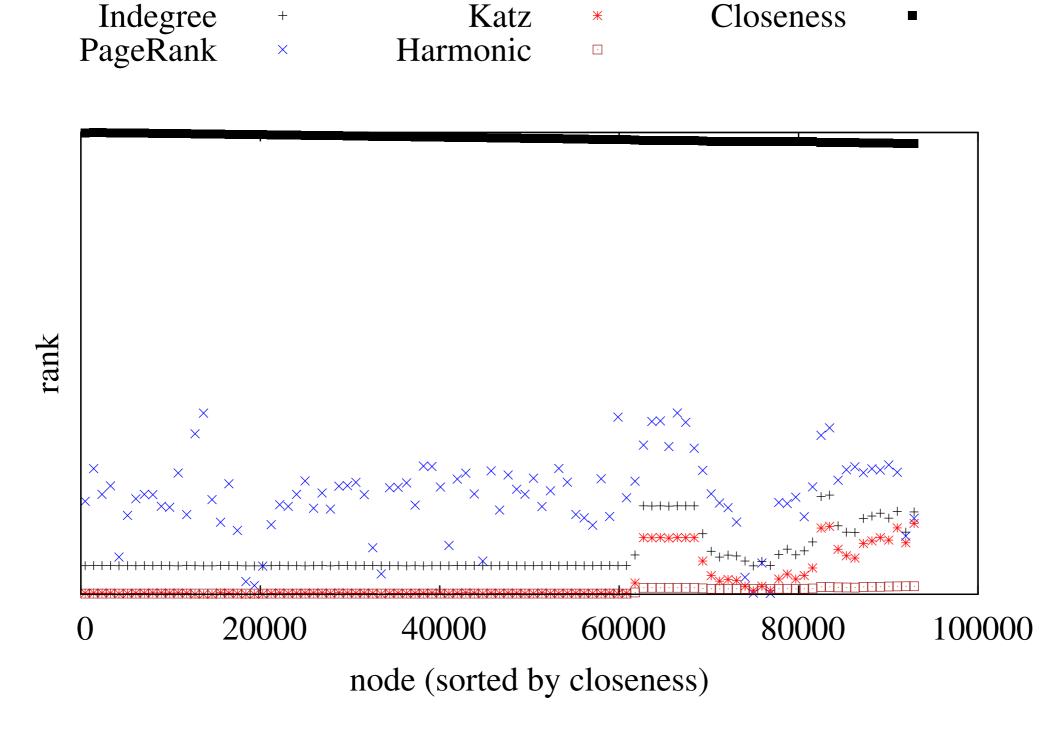
 τ_h

	Ind.	PR	Katz	Harm.	Cl.
Indegree	1	0.90	0.98	0.91	0.10
PageRank	0.90	1	0.88	0.81	0.64
Katz	0.98	0.88	1	0.92	0.11
Harmonic	0.91	0.81	0.92	1	0.18
Closeness	0.10	0.64	0.11	0.18	1

Common Crawl Hosts

Indegree	PageRank	Katz	Harmonic	Closeness
wordpress.org	gmpg.org	wordpress.org	youtube.com	0-p.com
youtube.com	wordpress.org	youtube.com	en.wikipedia.org	0-0-0-0-0-0-0.indahiphop.ru
gmpg.org	youtube.com	gmpg.org	twitter.com	0-0-1.i.tiexue.net
en.wikipedia.org	livejournal.com	en.wikipedia.org	google.com	0-00cigarettes.info
tumblr.com	tumblr.com	tumblr.com	wordpress.org	0-0mos00.hi5.com
twitter.com	en.wikipedia.org	twitter.com	flickr.com	0-0new0-0.hi5.com
google.com	twitter.com	google.com	facebook.com	0-0sunny0-0.hi5.com
flickr.com	networkadvertising.org	flickr.com	apple.com	0-1.i.tiexue.net
rtalabel.org	promodj.com	rtalabel.org	vimeo.com	0-1.sxsy.co
wordpress.com	skriptmail.de	wordpress.com	creativecommons.org	0-2.paparazziwannabe.com
mp3shake.com	parallels.com	mp3shake.com	amazon.com	0-311.cn
w3schools.com	- tistory.com	w3schools.com	adobe.com	0-360.rukazan.ru
domains.lycos.com	google.com	creativecommons.org	myspace.com	0-5days.com
staff.tumblr.com	miibeian.gov.cn	staff.tumblr.com	w3.org	0-5days.net
club.tripod.com	phpbb.com	domains.lycos.com	bbc.co.uk	0-5kalibr.pdj.ru
creativecommons.org	blog.fc2.com	club.tripod.com	nytimes.com	0-9-0-4-4-9.promoradio.ru
vimeo.com	tw.yahoo.com	vimeo.com	yahoo.com	0-9-0-9. dbass.ru
miibeian.gov.cn	w3schools.com	miibeian.gov.cn	microsoft.com	0-9-0-9.promodj.ru
facebook.com	wordpress.com	facebook.com	guardian.co.uk	0-9-1125.i.tiexue.net
phpbb.com	domains.lycos.com	phpbb.com	imdb.com	0-9-7-16.software.informer.com

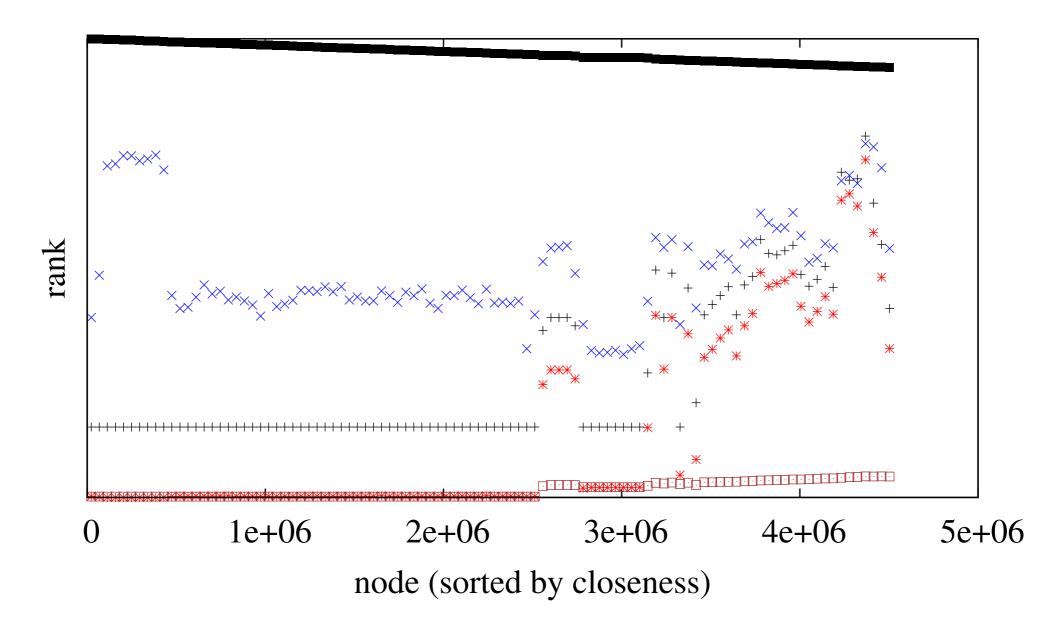
Common Crawl Hosts


	Ind.	PR	Katz	Harm.	Cl.
Indegree	1	0.71	0.89	0.61	0.54
PageRank	0.71	1	0.66	0.50	0.50
Katz	0.89	0.66	1	0.69	0.59
Harmonic	0.61	0.50	0.69	1	0.86
Closeness	0.54	0.50	0.59	0.86	1

τ

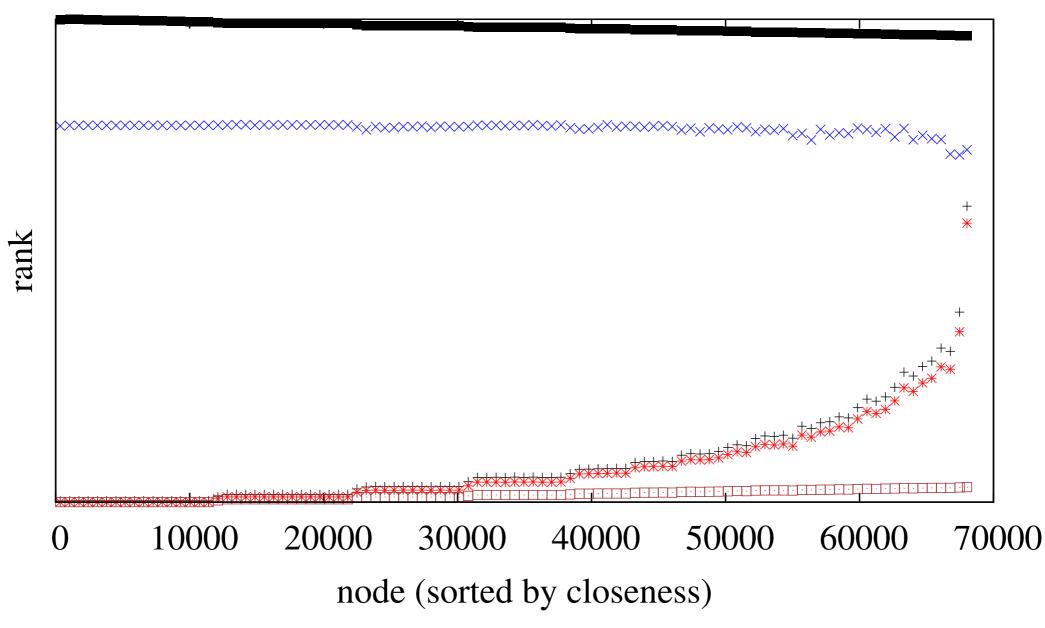
 τ_h

	Ind.	PR	Katz	Harm.	Cl.
Indegree	1	0.91	0.96	0.72	0.20
PageRank	0.91	1	0.90	0.81	0.69
Katz	0.96	0.90	1	0.78	0.15
Harmonic	0.72	0.81	0.78	1	0.35
Closeness	0.20	0.69	0.15	0.35	1


Why does closeness τ_h -correlate with PageRank?

Rank of nodes unreachable from the giant component of Wikipedia

Why does closeness T_h -correlate with PageRank?


Indegree	+	Katz	*	Closeness	•
PageRank	×	Harmonic	·		

Rank of nodes unreachable from the giant component of Common Crawl

Why does closeness T_h -correlate with PageRank?

Indegree	+	Katz	*	Closeness	
PageRank	×	Harmonic			

Rank of nodes unreachable from the giant component of Hollywood

Conclusions

- We believe τ_h is a new and valuable tool to understand rankings
- In general, the machinery around T_w can be used to try easily new application-dependent weighted correlation indices on a large scale
- There are obvious elements of arbitrariness, but hyperbolic weighting is at the convergence of several previous proposals
- Implemented as stats.weightedtau in SciPy (easy to use!)
- Software, as usual, at http://law.di.unimi.it/