From PhD to Industry:

LLM and Career Path

Amin Sadri June 2025

Outline

• LLMs

- Infinite Intelligence (Imaginative)
- Reasoning (Technical)
- Optimization (Technical)
- Positive feedback (Math)
- Sum up

Career Path

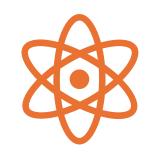
- Career-path Advice
- Guide for PhD Students
- Job Hunting
- Interview
- Sum up

First Part: LLMs

Exploring Infinite Intelligence

Philosophical, Not Scientific

A speculative idea, not grounded in current science.


Current AI is Bounded

Operates within training data — no true creativity.

The Singularity Hypothesis A hypothetical point where AI improves itself exponentially.

Intelligence Might Have a Natural Limit.

1. Physical Limits

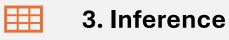
Intelligence relies on computation, bound by physics (light speed, energy, thermodynamics).

2. Complexity Collapse

Too much complexity can cause instability or self-destruction.

Beyond a threshold, systems may lose coherence—like fragile ecosystems.

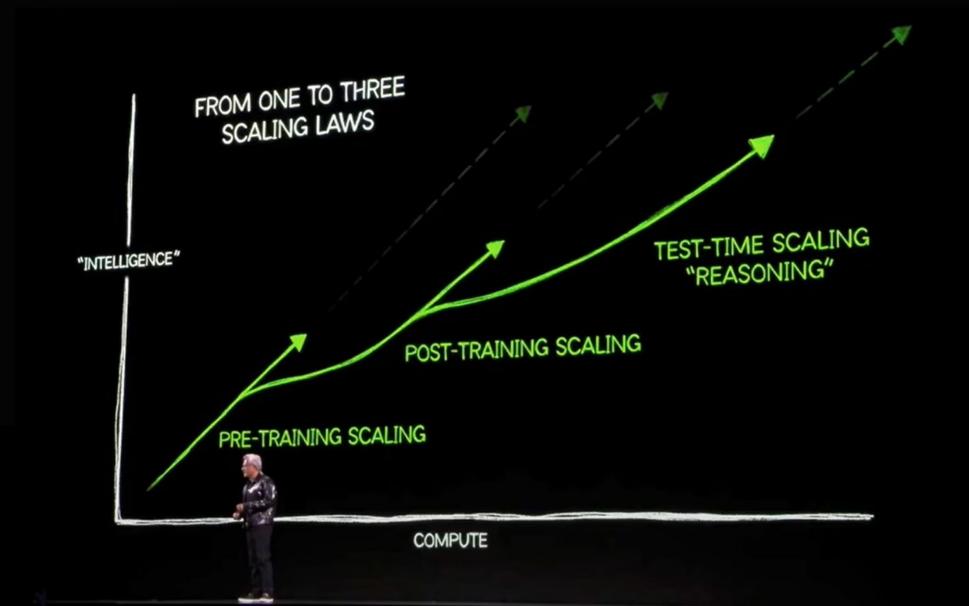
Training LLMs


2. Post-training

(Reinforcement Learning)

Trained on massive text data by predicting missing or next words.

Focus on helpfulness, safety, and alignment.


Model generates responses \rightarrow humans rank \rightarrow model improves.

The final model is used to generate outputs based on user input.

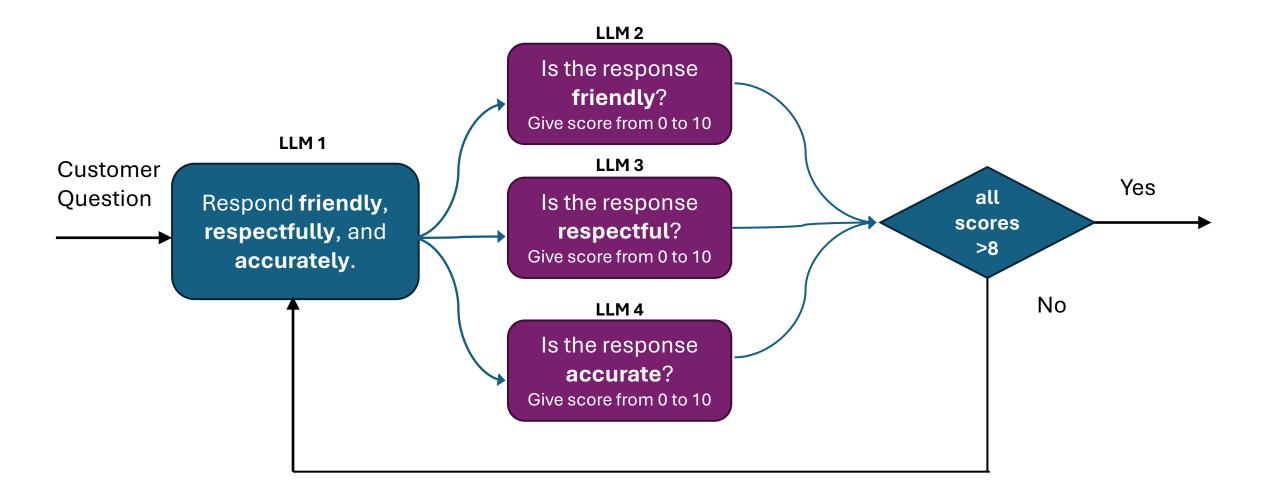
Three Laws of Scaling

Reasoning

- Simulating step-by-step thinking to solve problems.
- Most reasoning appears during prompting (e.g., using *Chain-of-Thought*).
- Prompting models to "think step-by-step" improves accuracy,

Reasoning – Example 1

Prompt:

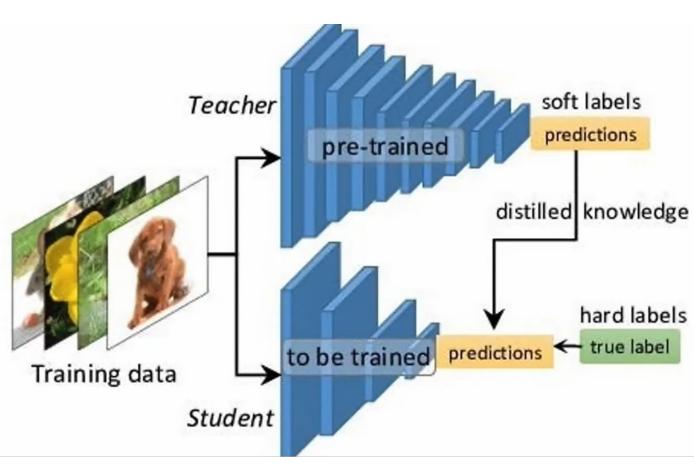

"Concatenate the last letter of the word *Artificial* with the last letter of the word *Intelligence*. What would you get?"

Answer 1: 🔽 le

Answer 2 (Reasoning):

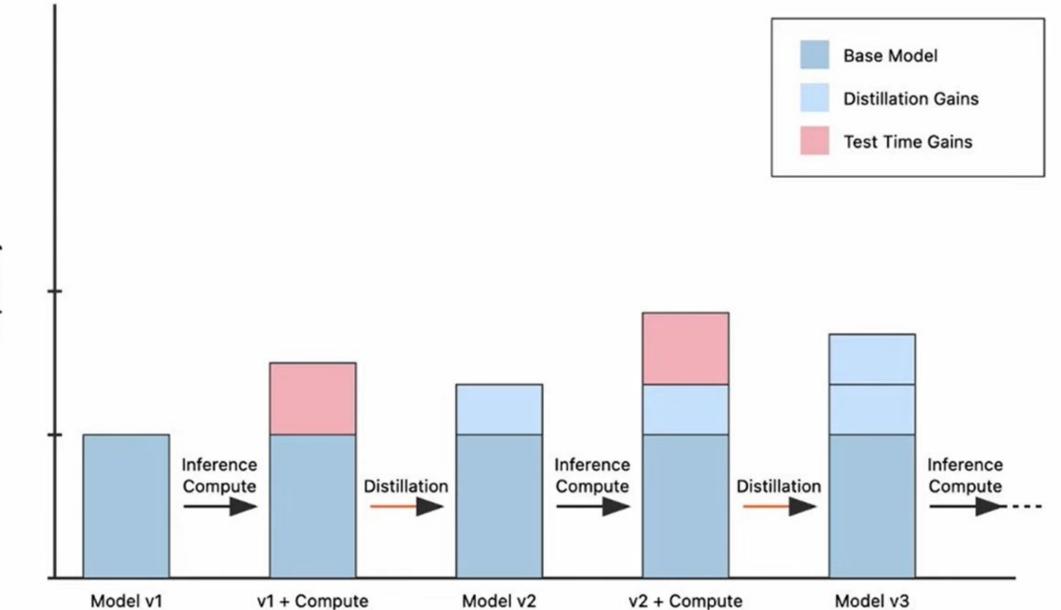
1.The last letter of *Artificial* is I
2.The last letter of *Intelligence* is e
3.Concatenating them gives: I + e = Ie

Reasoning – Example 2



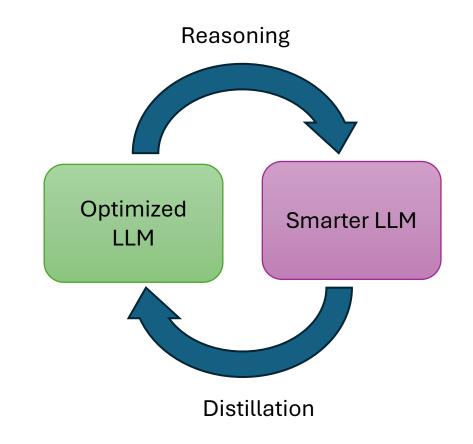
Is this the loop to infinite intelligence?

No


Distillation

- A technique to transfer knowledge from a large, powerful LLM (*teacher*) to a smaller, faster one (*student*).
- Reduces model size and inference cost
- Preserves much of the original model's performance

Evaluation and Results		Student Teacher		
	Sky-T1-32B-Preview	Qwen-2.5-32B-Instruct	QwQ	o1-preview
Math500	82.4	76.2	85.4	81.4
AIME2024	43.3	16.7	50.0	40.0
LiveCodeBench-Easy	86.3	84.6	90.7	92.9
LiveCodeBench-Medium	56.8	40.8	56.3	54.9
LiveCodeBench-Hard	17.9	9.8	17.1	16.3
GPQA-Diamond	56.8	45.5	52.5	75.2


Model Capability Feedback Loop

Capability

Positive Feedback

- when the output of a system feeds back in and makes the next output stronger.
- Example: Microphone Screeching:
 - Mic picks up sound → speaker plays it → mic hears it louder → repeats → loud screech.

• Positive feedback **can** lead to instability or divergent behavior.

Positive Feedback Different Cases

- Stable $a[n] = a[n-1] + (\frac{1}{2})^n$
 - 0, 1/2, 3/4, 7/8, ...
- Unstable
 - 2, 6, 14, ...
- Unstable
 - 0, 1, 1+1/2, 1+1/2+1/3, ...

$$a[n] = a[n-1] + 2^n$$

$$a[n] = a[n-1] + \frac{1}{n}$$

Conclusion

Could AI hit an unstable feedback loop?

We don't know—and lack of evidence isn't proof it can't happen.

- Even if it hasn't yet, can we assume it never will? No—future advances may change the dynamics.
- Staying informed about AI's rapid evolution is crucial for us.

Question?

Second Part: Job Market and Career Path

Career-path Advice

- 1. Smart decisions matter more than hard work.
- 2. Think 5–10 years ahead and act accordingly.
- 3. Invest in relationships, not just resume.

Guide for PhD Students

- What you learned in terms of techniques during your PhD may have limited value in industry.
- What truly matters is your ability to:
 - solve problems
 - learn quickly
 - focus deeply on a subject
- Jobs rarely match your thesis—adaptability matters more.

Job Hunting

- Job hunting is not a competition it's a matching game.
 - Don't take rejection personally; it's about fit, not your worth.
- The more you apply, the more chances you create.
- Too little prep leads to weak applications; too much prep slows you down. Balance is key.
- The first job is often the hardest to get.

The Job Application Equation

- These three should be in line:
 - Advertised position
 - Your expected salary
 - Your CV/presentation

Interview

Believe in yourself – If you don't, no one else will.

Keep it simple – Avoid overly technical jargon; be clear and relatable.

Show intent – Focus on how you want to solve problems and add value.

Last Advice

Be Kind to Yourself

